15 Analytic functions

I start directly with the definition.

Definition 15.1. Function f: E — C is called analytic in E if for any zg € E it can be represented
by a convergent power series with non-zero radius of convergence.

In the last section I showed that “analytic” implies “holomorphic.” Here my first goal is to show
that the converse is also true, and hence being analytic is a characterization of our main hero —
holomorphic functions.

Theorem 15.2. Let f: E — C be holomorphic. Then for each zg € E it can be represented as the
power series f(z) =Y, <qcn(z — 20)" with nonzero radius of convergence R > 0. Moreover, for each
specific point zg € E the radius of convergence can be chosen as the minimum distance from point zg
to the boundary of E.

Proof. By the made assumptions, f is holomorphic in some ball B(zg, R). Let g(z) = f(z + z0), and
g is holomorphic in the ball B(0, R). For any z € B(0,R) and |z| < r < R I can use the Cauchy’s

formula
1 g(w)
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n>0

g9(z) = dw

Now I will use the fact that

where the last series converges uniformly for all w € 9B(0, r) by the Weierstrass M test, since |z/w| < 1
by construction. Since the series converges uniformly and all the terms are continuous, we are allowed
to interchange the order of summation and integrations:

o= |
( ) OB(0,r) wn-i—l

n>0

and returning to the original function f I conclude that

f(Z>:g(z—zo):Z(z—Zo)n;ﬂi/aB( )({(ZO”‘H ZCnZ’—ZO

n>0 n>0
as required. |

Therefore, in complex analysis the words “analytic” and “holomorphic” can be used interchange-
ably.

Note also that this theorem directly gives a recipe to determine R. For instance, if f(z) = tanz
(recall the last section), and I need to compute power series around zp = 0 then the closest point at
which tan stops being holomorphic is a = £7/2, then therefore the radius of convergence of the found
power series is R = 7/2.
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Now, using the power series representation, I can classify zeros of a holomorphic function. Recall
that Z € F is a zero of f: E — C if f(2) = 0. Since f is holomorphic at Z, I can represent it as a
convergent power series

fR)=c(z—2) +c(z—2)>+...,

note that cg = 0 because f(2) = 0. Logically it is possible two have two possibility: 1) all the rest of
¢, are zero, and in this case f is identically zero in some B(Z,€), or 2) there is integer m such that
¢1=...=c¢m-1 =0and ¢, # 0. In this case I can write, by factoring (z — 2)™:

f(2) = (2 = )™ (cm + emr1(z = 2) + emaz(z = 2)* +...) = (2 = £)"g(2),

where ¢ is a holomorphic function (since it is represented by a convergent power series) and g(2) # 0.

Now the constant m, exactly as in the case of a polynomial, is called a multiplicity of the isolated
zero Z. If m = 1 then zero is called simple. The reasoning given above lead to the very important
identity principle.

Theorem 15.3. Let f: E — C be holomorphic and assume that f(z,) = 0 where (2,)02 is a
sequence of different numbers in E that converges in E. Then f is identically zero on E.

Proof. The proof is topological in nature. Let me define two subsets of E:

X ={z € E: there is r such that f(z) =0 for all z € B(z,7)},
Y = {z € E: there is r such that f(z) # 0 for all z € B(z,7) \ {z}}.

The key thing here is to realize that, due to our classification of zeros of f, E = XUY and XNY = (.
Indeed, if z € E then either f(z) # 0 or f(z) = 0. In the first case, due to continuity of f there will
be a ball around z for which f(z) # 0. If f(z) = 0 then either f is identically zero (and z € X) or it
is isolated and hence z € Y.

Now I need to show that both X and Y are open. Let z € X. By definition B(z,7) C X as well
and therefore X is open. Now let z € Y. Since the points in Y are either isolated zeros or non-zero,
then B(z,r) C Y for sufficiently small r, and hence Y is open. Since E is a union of two disjoint
open sets and E is connected one of them must be empty. Let Z € E be the limit point of (z,). By
construction 2 € X, and hence Y is empty. Therefore, X = E and f is identically zero. |

As an almost immediate corollary, I obtain

Corollary 15.4. Let f,g: E — C be such that f(z,) = g(z,) for a convergent in E sequence of
distinct numbers (z,). Then f =g in E.

Even more explicitly, if two holomorphic functions coincide on a small ball B(z,r) C E then they
must coincide on the whole domain E.

Finally, the power series representation allows proving the following maximum principle (also called
Mazimum Modulus Theorem,).

Theorem 15.5. Let f: E — C be holomorphic. Then |f| cannot achieve a (local) maximum in
E unless f is constant: if f is non-constant then for every a € E and 6 > 0 there is z € E with

|f(2)| > |f(a)| and |z —a| < 4.



Proof. Let f be non-constant and a € F. Then I can write
f(z) = fa) + e(z = a)™ + (z — )" h(2),

where m is a positive integer, ¢ is nonzero complex number, and h is holomorphic. The idea of the
proof is to find such z explicitly, for which |f(a) + ¢(z — a)™| = |f(a)| + |c(z — a)™| > |f(a)| and the
remaining term will be small enough to disregard.

Now to the exact details. Let a, 3 € R be such that f(a) = |f(a)|e!* and ¢ = |c¢|e’®. Choose § € R
so that 8+ m# = « (and since m # 0 it is always possible). Now if r > 0 and z = a + ¢!’ T have

fa) +c(z = a)™ = (|f(a)] + [e|r™)e! PO,
That is [f(a) + c¢(z — a)™| = | f(a)| + |c|r™. Now, using the inverse triangle inequality,
[f(2)] = |f(a) +e(z=a)" + (2= a)" T h(2)| > |f(a) +e(z—a)" | =" |h(2)| > |f(a)|+c|r™ — Mr™ 1,

where I used the fact that being holomorphic for h implies that it is continuous around a and hence
bounded by M for all |z — a| < p. Now I choose § € (0, p) such that M < |c|/2. Then if 0 < r < 4,

cfr™

N2 @)+ = > ()

as required. |

Corollary 15.6. Let f: E — C be holomorphic in E, E be bounded and extends continuously to
OFE. Then

su z)| = max | f(z)|-

sup £(2)] = mae|£(2)
Proof. If f is constant the statement is true. Assume f is not constant. Since E = EUQJEFE is compact,
|f| reaches on it its maximum. By the proven maximum principle, this maximum cannot be in F,
therefore, it is in OF. Since f is continuous everywhere in E the conclusion follows. |



