15 Analytic functions

I start directly with the definition.
Definition 15.1. Function $f: E \longrightarrow \mathbf{C}$ is called analytic in E if for any $z_{0} \in E$ it can be represented by a convergent power series with non-zero radius of convergence.

In the last section I showed that "analytic" implies "holomorphic." Here my first goal is to show that the converse is also true, and hence being analytic is a characterization of our main hero holomorphic functions.

Theorem 15.2. Let $f: E \longrightarrow \mathbf{C}$ be holomorphic. Then for each $z_{0} \in E$ it can be represented as the power series $f(z)=\sum_{n \geq 0} c_{n}\left(z-z_{0}\right)^{n}$ with nonzero radius of convergence $R>0$. Moreover, for each specific point $z_{0} \in E$ the radius of convergence can be chosen as the minimum distance from point z_{0} to the boundary of E.

Proof. By the made assumptions, f is holomorphic in some ball $B\left(z_{0}, R\right)$. Let $g(z)=f\left(z+z_{0}\right)$, and g is holomorphic in the ball $B(0, R)$. For any $z \in B(0, R)$ and $|z|<r<R$ I can use the Cauchy's formula

$$
g(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B(0, r)} \frac{g(w)}{w-z} \mathrm{~d} w .
$$

Now I will use the fact that

$$
\frac{1}{w-z}=\frac{1}{w} \frac{1}{1-\frac{z}{w}}=\frac{1}{w} \sum_{n \geq 0}\left(\frac{z}{w}\right)^{n},
$$

where the last series converges uniformly for all $w \in \partial B(0, r)$ by the Weierstrass M test, since $|z / w|<1$ by construction. Since the series converges uniformly and all the terms are continuous, we are allowed to interchange the order of summation and integrations:

$$
g(z)=\sum_{n \geq 0} z^{n} \frac{1}{2 \pi \mathrm{i}} \int_{\partial B(0, r)} \frac{g(w)}{w^{n+1}} \mathrm{~d} w,
$$

and returning to the original function f I conclude that

$$
f(z)=g\left(z-z_{0}\right)=\sum_{n \geq 0}\left(z-z_{0}\right)^{n} \frac{1}{2 \pi \mathrm{i}} \int_{\partial B\left(z_{0}, r\right)} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w=\sum_{n \geq 0} c_{n}\left(z-z_{0}\right)^{n}
$$

as required.
Therefore, in complex analysis the words "analytic" and "holomorphic" can be used interchangeably.

Note also that this theorem directly gives a recipe to determine R. For instance, if $f(z)=\tan z$ (recall the last section), and I need to compute power series around $z_{0}=0$ then the closest point at which tan stops being holomorphic is $a= \pm \pi / 2$, then therefore the radius of convergence of the found power series is $R=\pi / 2$.

[^0]Now, using the power series representation, I can classify zeros of a holomorphic function. Recall that $\hat{z} \in E$ is a zero of $f: E \longrightarrow \mathbf{C}$ if $f(\hat{z})=0$. Since f is holomorphic at \hat{z}, I can represent it as a convergent power series

$$
f(z)=c_{1}(z-\hat{z})+c_{2}(z-\hat{z})^{2}+\ldots,
$$

note that $c_{0}=0$ because $f(\hat{z})=0$. Logically it is possible two have two possibility: 1) all the rest of c_{n} are zero, and in this case f is identically zero in some $B(\hat{z}, \epsilon)$, or 2) there is integer m such that $c_{1}=\ldots=c_{m-1}=0$ and $c_{m} \neq 0$. In this case I can write, by factoring $(z-\hat{z})^{m}$:

$$
f(z)=(z-\hat{z})^{m}\left(c_{m}+c_{m+1}(z-\hat{z})+c_{m+2}(z-\hat{z})^{2}+\ldots\right)=(z-\hat{z})^{m} g(z),
$$

where g is a holomorphic function (since it is represented by a convergent power series) and $g(\hat{z}) \neq 0$.
Now the constant m, exactly as in the case of a polynomial, is called a multiplicity of the isolated zero \hat{z}. If $m=1$ then zero is called simple. The reasoning given above lead to the very important identity principle.

Theorem 15.3. Let $f: E \longrightarrow \mathbf{C}$ be holomorphic and assume that $f\left(z_{n}\right)=0$ where $\left(z_{n}\right)_{n=0}^{\infty}$ is a sequence of different numbers in E that converges in E. Then f is identically zero on E.

Proof. The proof is topological in nature. Let me define two subsets of E :

$$
\begin{aligned}
X & =\{z \in E: \text { there is } r \text { such that } f(z)=0 \text { for all } z \in B(z, r)\}, \\
Y & =\{z \in E \text { : there is } r \text { such that } f(z) \neq 0 \text { for all } z \in B(z, r) \backslash\{z\}\} .
\end{aligned}
$$

The key thing here is to realize that, due to our classification of zeros of $f, E=X \cup Y$ and $X \cap Y=\emptyset$. Indeed, if $z \in E$ then either $f(z) \neq 0$ or $f(z)=0$. In the first case, due to continuity of f there will be a ball around z for which $f(z) \neq 0$. If $f(z)=0$ then either f is identically zero (and $z \in X$) or it is isolated and hence $z \in Y$.

Now I need to show that both X and Y are open. Let $z \in X$. By definition $B(z, r) \subseteq X$ as well and therefore X is open. Now let $z \in Y$. Since the points in Y are either isolated zeros or non-zero, then $B(z, r) \subseteq Y$ for sufficiently small r, and hence Y is open. Since E is a union of two disjoint open sets and E is connected one of them must be empty. Let $\hat{z} \in E$ be the limit point of $\left(z_{n}\right)$. By construction $\hat{z} \in X$, and hence Y is empty. Therefore, $X=E$ and f is identically zero.

As an almost immediate corollary, I obtain
Corollary 15.4. Let $f, g: E \longrightarrow \mathbf{C}$ be such that $f\left(z_{n}\right)=g\left(z_{n}\right)$ for a convergent in E sequence of distinct numbers $\left(z_{n}\right)$. Then $f=g$ in E.

Even more explicitly, if two holomorphic functions coincide on a small ball $B(z, r) \subseteq E$ then they must coincide on the whole domain E.

Finally, the power series representation allows proving the following maximum principle (also called Maximum Modulus Theorem).

Theorem 15.5. Let $f: E \longrightarrow \mathbf{C}$ be holomorphic. Then $|f|$ cannot achieve a (local) maximum in E unless f is constant: if f is non-constant then for every $a \in E$ and $\delta>0$ there is $z \in E$ with $|f(z)|>|f(a)|$ and $|z-a|<\delta$.

Proof. Let f be non-constant and $a \in E$. Then I can write

$$
f(z)=f(a)+c(z-a)^{m}+(z-a)^{m+1} h(z),
$$

where m is a positive integer, c is nonzero complex number, and h is holomorphic. The idea of the proof is to find such z explicitly, for which $\left|f(a)+c(z-a)^{m}\right|=|f(a)|+\left|c(z-a)^{m}\right|>|f(a)|$ and the remaining term will be small enough to disregard.

Now to the exact details. Let $\alpha, \beta \in \mathbf{R}$ be such that $f(a)=|f(a)| e^{\mathrm{i} \alpha}$ and $c=|c| e^{\mathrm{i} \beta}$. Choose $\theta \in \mathbf{R}$ so that $\beta+m \theta=\alpha$ (and since $m \neq 0$ it is always possible). Now if $r>0$ and $z=a+r e^{\mathrm{i} \theta} \mathrm{I}$ have

$$
f(a)+c(z-a)^{m}=\left(|f(a)|+|c| r^{m}\right) e^{\mathrm{i}(\beta+m \theta)} .
$$

That is $\left|f(a)+c(z-a)^{m}\right|=|f(a)|+|c| r^{m}$. Now, using the inverse triangle inequality,
$|f(z)|=\left|f(a)+c(z-a)^{m}+(z-a)^{m+1} h(z)\right| \geq\left|f(a)+c(z-a)^{m}\right|-r^{m+1}|h(z)| \geq|f(a)|+|c| r^{m}-M r^{m+1}$,
where I used the fact that being holomorphic for h implies that it is continuous around a and hence bounded by M for all $|z-a| \leq \rho$. Now I choose $\delta \in(0, \rho)$ such that $M \delta<|c| / 2$. Then if $0<r<\delta$,

$$
|f(z)| \geq|f(a)|+\frac{|c| r^{m}}{2}>|f(a)|
$$

as required.
Corollary 15.6. Let $f: E \longrightarrow \mathbf{C}$ be holomorphic in E, E be bounded and extends continuously to ∂E. Then

$$
\sup _{z \in E}|f(z)|=\max _{z \in \partial E}|f(z)| .
$$

Proof. If f is constant the statement is true. Assume f is not constant. Since $\bar{E}=E \cup \partial E$ is compact, $|f|$ reaches on it its maximum. By the proven maximum principle, this maximum cannot be in E, therefore, it is in ∂E. Since f is continuous everywhere in \bar{E} the conclusion follows.

[^0]: Math 452: Complex Analysis by Artem Novozhilov ${ }^{\circledR}$
 e-mail: artem.novozhilov@ndsu.edu. Spring 2019

