15 Analytic functions

I start directly with the definition.

Definition 15.1. Function $f: E \longrightarrow \mathbf{C}$ is called analytic in E if for any $z_0 \in E$ it can be represented by a convergent power series with non-zero radius of convergence.

In the last section I showed that "analytic" implies "holomorphic." Here my first goal is to show that the converse is also true, and hence being analytic is a characterization of our main hero holomorphic functions.

Theorem 15.2. Let $f: E \longrightarrow \mathbb{C}$ be holomorphic. Then for each $z_0 \in E$ it can be represented as the power series $f(z) = \sum_{n\geq 0} c_n(z-z_0)^n$ with nonzero radius of convergence R > 0. Moreover, for each specific point $z_0 \in E$ the radius of convergence can be chosen as the minimum distance from point z_0 to the boundary of E.

Proof. By the made assumptions, f is holomorphic in some ball $B(z_0, R)$. Let $g(z) = f(z + z_0)$, and g is holomorphic in the ball B(0, R). For any $z \in B(0, R)$ and |z| < r < R I can use the Cauchy's formula

$$g(z) = \frac{1}{2\pi i} \int_{\partial B(0,r)} \frac{g(w)}{w-z} dw.$$

Now I will use the fact that

$$\frac{1}{w-z} = \frac{1}{w} \frac{1}{1-\frac{z}{w}} = \frac{1}{w} \sum_{n \ge 0} \left(\frac{z}{w}\right)^n,$$

where the last series converges uniformly for all $w \in \partial B(0, r)$ by the Weierstrass M test, since |z/w| < 1 by construction. Since the series converges uniformly and all the terms are continuous, we are allowed to interchange the order of summation and integrations:

$$g(z) = \sum_{n \ge 0} z^n \frac{1}{2\pi \mathrm{i}} \int_{\partial B(0,r)} \frac{g(w)}{w^{n+1}} \mathrm{d}w,$$

and returning to the original function f I conclude that

$$f(z) = g(z - z_0) = \sum_{n \ge 0} (z - z_0)^n \frac{1}{2\pi i} \int_{\partial B(z_0, r)} \frac{f(w)}{(w - z_0)^{n+1}} dw = \sum_{n \ge 0} c_n (z - z_0)^n$$

as required.

Therefore, in complex analysis the words "analytic" and "holomorphic" can be used interchangeably.

Note also that this theorem directly gives a recipe to determine R. For instance, if $f(z) = \tan z$ (recall the last section), and I need to compute power series around $z_0 = 0$ then the closest point at which tan stops being holomorphic is $a = \pm \pi/2$, then therefore the radius of convergence of the found power series is $R = \pi/2$.

Math 452: *Complex Analysis* by Artem Novozhilov[©] e-mail: artem.novozhilov@ndsu.edu. Spring 2019

Now, using the power series representation, I can classify zeros of a holomorphic function. Recall that $\hat{z} \in E$ is a zero of $f: E \longrightarrow \mathbb{C}$ if $f(\hat{z}) = 0$. Since f is holomorphic at \hat{z} , I can represent it as a convergent power series

$$f(z) = c_1(z - \hat{z}) + c_2(z - \hat{z})^2 + \dots,$$

note that $c_0 = 0$ because $f(\hat{z}) = 0$. Logically it is possible two have two possibility: 1) all the rest of c_n are zero, and in this case f is identically zero in some $B(\hat{z}, \epsilon)$, or 2) there is integer m such that $c_1 = \ldots = c_{m-1} = 0$ and $c_m \neq 0$. In this case I can write, by factoring $(z - \hat{z})^m$:

$$f(z) = (z - \hat{z})^m (c_m + c_{m+1}(z - \hat{z}) + c_{m+2}(z - \hat{z})^2 + \ldots) = (z - \hat{z})^m g(z),$$

where g is a holomorphic function (since it is represented by a convergent power series) and $g(\hat{z}) \neq 0$.

Now the constant m, exactly as in the case of a polynomial, is called a multiplicity of the *isolated* zero \hat{z} . If m = 1 then zero is called *simple*. The reasoning given above lead to the very important *identity principle*.

Theorem 15.3. Let $f: E \longrightarrow \mathbf{C}$ be holomorphic and assume that $f(z_n) = 0$ where $(z_n)_{n=0}^{\infty}$ is a sequence of different numbers in E that converges in E. Then f is identically zero on E.

Proof. The proof is topological in nature. Let me define two subsets of E:

$$X = \{z \in E : \text{ there is } r \text{ such that } f(z) = 0 \text{ for all } z \in B(z, r)\},\$$
$$Y = \{z \in E : \text{ there is } r \text{ such that } f(z) \neq 0 \text{ for all } z \in B(z, r) \setminus \{z\}\}.$$

The key thing here is to realize that, due to our classification of zeros of $f, E = X \cup Y$ and $X \cap Y = \emptyset$. Indeed, if $z \in E$ then either $f(z) \neq 0$ or f(z) = 0. In the first case, due to continuity of f there will be a ball around z for which $f(z) \neq 0$. If f(z) = 0 then either f is identically zero (and $z \in X$) or it is isolated and hence $z \in Y$.

Now I need to show that both X and Y are open. Let $z \in X$. By definition $B(z,r) \subseteq X$ as well and therefore X is open. Now let $z \in Y$. Since the points in Y are either isolated zeros or non-zero, then $B(z,r) \subseteq Y$ for sufficiently small r, and hence Y is open. Since E is a union of two disjoint open sets and E is connected one of them must be empty. Let $\hat{z} \in E$ be the limit point of (z_n) . By construction $\hat{z} \in X$, and hence Y is empty. Therefore, X = E and f is identically zero.

As an almost immediate corollary, I obtain

Corollary 15.4. Let $f, g: E \longrightarrow C$ be such that $f(z_n) = g(z_n)$ for a convergent in E sequence of distinct numbers (z_n) . Then f = g in E.

Even more explicitly, if two holomorphic functions coincide on a small ball $B(z,r) \subseteq E$ then they must coincide on the whole domain E.

Finally, the power series representation allows proving the following *maximum principle* (also called *Maximum Modulus Theorem*).

Theorem 15.5. Let $f: E \longrightarrow \mathbb{C}$ be holomorphic. Then |f| cannot achieve a (local) maximum in E unless f is constant: if f is non-constant then for every $a \in E$ and $\delta > 0$ there is $z \in E$ with |f(z)| > |f(a)| and $|z - a| < \delta$.

Proof. Let f be non-constant and $a \in E$. Then I can write

$$f(z) = f(a) + c(z - a)^m + (z - a)^{m+1}h(z),$$

where *m* is a positive integer, *c* is nonzero complex number, and *h* is holomorphic. The idea of the proof is to find such *z* explicitly, for which $|f(a) + c(z-a)^m| = |f(a)| + |c(z-a)^m| > |f(a)|$ and the remaining term will be small enough to disregard.

Now to the exact details. Let $\alpha, \beta \in \mathbf{R}$ be such that $f(a) = |f(a)|e^{i\alpha}$ and $c = |c|e^{i\beta}$. Choose $\theta \in \mathbf{R}$ so that $\beta + m\theta = \alpha$ (and since $m \neq 0$ it is always possible). Now if r > 0 and $z = a + re^{i\theta}$ I have

$$f(a) + c(z - a)^m = (|f(a)| + |c|r^m)e^{i(\beta + m\theta)}.$$

That is $|f(a) + c(z-a)^m| = |f(a)| + |c|r^m$. Now, using the inverse triangle inequality,

$$|f(z)| = |f(a) + c(z-a)^m + (z-a)^{m+1}h(z)| \ge |f(a) + c(z-a)^m| - r^{m+1}|h(z)| \ge |f(a)| + |c|r^m - Mr^{m+1},$$

where I used the fact that being holomorphic for h implies that it is continuous around a and hence bounded by M for all $|z - a| \le \rho$. Now I choose $\delta \in (0, \rho)$ such that $M\delta < |c|/2$. Then if $0 < r < \delta$,

$$|f(z)| \ge |f(a)| + \frac{|c|r^m}{2} > |f(a)|$$

as required.

Corollary 15.6. Let $f: E \longrightarrow \mathbf{C}$ be holomorphic in E, E be bounded and extends continuously to ∂E . Then

$$\sup_{z \in E} |f(z)| = \max_{z \in \partial E} |f(z)|.$$

Proof. If f is constant the statement is true. Assume f is not constant. Since $\overline{E} = E \cup \partial E$ is compact, |f| reaches on it its maximum. By the proven maximum principle, this maximum cannot be in E, therefore, it is in ∂E . Since f is continuous everywhere in \overline{E} the conclusion follows.