
15 Analytic functions

I start directly with the definition.

Definition 15.1. Function f : E −→ C is called analytic in E if for any z0 ∈ E it can be represented
by a convergent power series with non-zero radius of convergence.

In the last section I showed that “analytic” implies “holomorphic.” Here my first goal is to show
that the converse is also true, and hence being analytic is a characterization of our main hero —
holomorphic functions.

Theorem 15.2. Let f : E −→ C be holomorphic. Then for each z0 ∈ E it can be represented as the
power series f(z) =

∑
n≥0 cn(z − z0)

n with nonzero radius of convergence R > 0. Moreover, for each
specific point z0 ∈ E the radius of convergence can be chosen as the minimum distance from point z0
to the boundary of E.

Proof. By the made assumptions, f is holomorphic in some ball B(z0, R). Let g(z) = f(z + z0), and
g is holomorphic in the ball B(0, R). For any z ∈ B(0, R) and |z| < r < R I can use the Cauchy’s
formula

g(z) =
1

2πi

∫
∂B(0,r)

g(w)

w − z
dw.

Now I will use the fact that
1

w − z
=

1

w

1

1− z
w

=
1

w

∑
n≥0

( z

w

)n
,

where the last series converges uniformly for all w ∈ ∂B(0, r) by the WeierstrassM test, since |z/w| < 1
by construction. Since the series converges uniformly and all the terms are continuous, we are allowed
to interchange the order of summation and integrations:

g(z) =
∑
n≥0

zn
1

2πi

∫
∂B(0,r)

g(w)

wn+1
dw,

and returning to the original function f I conclude that

f(z) = g(z − z0) =
∑
n≥0

(z − z0)
n 1

2πi

∫
∂B(z0,r)

f(w)

(w − z0)n+1
dw =

∑
n≥0

cn(z − z0)
n

as required. �

Therefore, in complex analysis the words “analytic” and “holomorphic” can be used interchange-
ably.

Note also that this theorem directly gives a recipe to determine R. For instance, if f(z) = tan z
(recall the last section), and I need to compute power series around z0 = 0 then the closest point at
which tan stops being holomorphic is a = ±π/2, then therefore the radius of convergence of the found
power series is R = π/2.
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Now, using the power series representation, I can classify zeros of a holomorphic function. Recall
that ẑ ∈ E is a zero of f : E −→ C if f(ẑ) = 0. Since f is holomorphic at ẑ, I can represent it as a
convergent power series

f(z) = c1(z − ẑ) + c2(z − ẑ)2 + . . . ,

note that c0 = 0 because f(ẑ) = 0. Logically it is possible two have two possibility: 1) all the rest of
cn are zero, and in this case f is identically zero in some B(ẑ, ϵ), or 2) there is integer m such that
c1 = . . . = cm−1 = 0 and cm ̸= 0. In this case I can write, by factoring (z − ẑ)m:

f(z) = (z − ẑ)m(cm + cm+1(z − ẑ) + cm+2(z − ẑ)2 + . . .) = (z − ẑ)mg(z),

where g is a holomorphic function (since it is represented by a convergent power series) and g(ẑ) ̸= 0.
Now the constant m, exactly as in the case of a polynomial, is called a multiplicity of the isolated

zero ẑ. If m = 1 then zero is called simple. The reasoning given above lead to the very important
identity principle.

Theorem 15.3. Let f : E −→ C be holomorphic and assume that f(zn) = 0 where (zn)
∞
n=0 is a

sequence of different numbers in E that converges in E. Then f is identically zero on E.

Proof. The proof is topological in nature. Let me define two subsets of E:

X = {z ∈ E : there is r such that f(z) = 0 for all z ∈ B(z, r)},
Y = {z ∈ E : there is r such that f(z) ̸= 0 for all z ∈ B(z, r) \ {z}}.

The key thing here is to realize that, due to our classification of zeros of f , E = X ∪Y and X ∩Y = ∅.
Indeed, if z ∈ E then either f(z) ̸= 0 or f(z) = 0. In the first case, due to continuity of f there will
be a ball around z for which f(z) ̸= 0. If f(z) = 0 then either f is identically zero (and z ∈ X) or it
is isolated and hence z ∈ Y .

Now I need to show that both X and Y are open. Let z ∈ X. By definition B(z, r) ⊆ X as well
and therefore X is open. Now let z ∈ Y . Since the points in Y are either isolated zeros or non-zero,
then B(z, r) ⊆ Y for sufficiently small r, and hence Y is open. Since E is a union of two disjoint
open sets and E is connected one of them must be empty. Let ẑ ∈ E be the limit point of (zn). By
construction ẑ ∈ X, and hence Y is empty. Therefore, X = E and f is identically zero. �

As an almost immediate corollary, I obtain

Corollary 15.4. Let f, g : E −→ C be such that f(zn) = g(zn) for a convergent in E sequence of
distinct numbers (zn). Then f = g in E.

Even more explicitly, if two holomorphic functions coincide on a small ball B(z, r) ⊆ E then they
must coincide on the whole domain E.

Finally, the power series representation allows proving the followingmaximum principle (also called
Maximum Modulus Theorem).

Theorem 15.5. Let f : E −→ C be holomorphic. Then |f | cannot achieve a (local) maximum in
E unless f is constant: if f is non-constant then for every a ∈ E and δ > 0 there is z ∈ E with
|f(z)| > |f(a)| and |z − a| < δ.
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Proof. Let f be non-constant and a ∈ E. Then I can write

f(z) = f(a) + c(z − a)m + (z − a)m+1h(z),

where m is a positive integer, c is nonzero complex number, and h is holomorphic. The idea of the
proof is to find such z explicitly, for which |f(a) + c(z − a)m| = |f(a)|+ |c(z − a)m| > |f(a)| and the
remaining term will be small enough to disregard.

Now to the exact details. Let α, β ∈ R be such that f(a) = |f(a)|eiα and c = |c|eiβ. Choose θ ∈ R
so that β +mθ = α (and since m ̸= 0 it is always possible). Now if r > 0 and z = a+ reiθ I have

f(a) + c(z − a)m = (|f(a)|+ |c|rm)ei(β+mθ).

That is |f(a) + c(z − a)m| = |f(a)|+ |c|rm. Now, using the inverse triangle inequality,

|f(z)| = |f(a)+c(z−a)m+(z−a)m+1h(z)| ≥ |f(a)+c(z−a)m|−rm+1|h(z)| ≥ |f(a)|+|c|rm−Mrm+1 ,

where I used the fact that being holomorphic for h implies that it is continuous around a and hence
bounded by M for all |z − a| ≤ ρ. Now I choose δ ∈ (0, ρ) such that Mδ < |c|/2. Then if 0 < r < δ,

|f(z)| ≥ |f(a)|+ |c|rm

2
> |f(a)|

as required. �

Corollary 15.6. Let f : E −→ C be holomorphic in E, E be bounded and extends continuously to
∂E. Then

sup
z∈E

|f(z)| = max
z∈∂E

|f(z)|.

Proof. If f is constant the statement is true. Assume f is not constant. Since E = E∪∂E is compact,
|f | reaches on it its maximum. By the proven maximum principle, this maximum cannot be in E,
therefore, it is in ∂E. Since f is continuous everywhere in E the conclusion follows. �
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